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a- Abstract 
10 170 

The first o rde r  determination of the propert ies  of a 

plasma immersed  in a constant, external, magnetic field is  

ca r r i ed  out. Normal mode analysis is utilized in an initial 

value problem based on plane symmetry. 

expansion coefficients for  the t ransverse  and longitudinal modes,  

Methods for  determining 

separately,  a r e  deduced. A d T t f O &  



I INTRODUCTION 

1 oI Ear37 Description ..I 

The h is tory  o f  plaslaa physics can be t raced  

back t o  L ? n p u i r ' s  gas discharge experiments of the l a t e  

1920 s He discovered tha t  s o x  electrons i n  the 

discharge had energies 1.'; -2 - -  <,L :ban the  po ten t i a l  

d i f f e rence  across the tube The explanation f o r  the 

above and associated phencnena appeared i n  a theo re t i ca l  

paper by Tonks and Lar;g,li:;ix in t ha t  same year [Tonks 

and Langui r ,  19291 

n o t  only ionized the gar i n  the  tube but; that  it a l s o  

caused some s p a t i a l  rearrangement cif the generated 

e lec t ron  concentration thus creat ing strong l o c a l  

e l e c t r i c  f i e l d s .  This would explain the energy source 

They p s t u l a t e d  t h a t  the discharge 

'of  the  high ve loc i ty  elec-brons observed, They then 

ca r r i ed  t h e i r  analysis  oae s t e p  fu r the r  by predict ing 

tha t  t he  system's a t t eap t  t o  regain. over-all n e u t r a l i t y  

would r e s u l t  in e lec t ron  or plasma o s c i l l a t i o n s ,  which 

i n  the  absence of  c o l l i s i o n s  and of therxtal motion (a 

zero temperature o r  cold pkasroa model w a s  chosen) would 

execute t h e i r  periodic motion a t  the  derived character- 

i s t i c  frequencyu w = w ad infinitumo In terms of 

more bas i c  parameters, w w a s  shorn- t o  be given by P 

P S  



- 2 -  
4 

where w 

e lec t ronic  concentration, charge, and mass, respectively.  

One ad hoc postulate  w a s  added t o  t h e i r  theory. 

They supposed tha t  the transverse o s c i l l a t i o n s  could 

a l so  ex i s t  and that  these would account f o r  the 

rad ia t ion  observed t o  l i nge r  a f t e r  the main discharge 

had subsidedo 

howeverg tha t  t h i s  rad ia t ion  i s  due t o  Bremsstrahlung 

and t o  the quantized rad ia t ive  processes tha t  occur i n  

i s  the plasma frequency and % d  e ,  m are  the 
P 

Spectroscopic analysis  has indicated,  

the  ion-electron recombination [Griem, 19611 e 

The parameter w i s  of primary importance i n  a l l  P 
problems dealing w i t h  the  in t e rac t ion  of electromag- 

n e t r i c  rad ia t ion  w i t h  ionized media, It may be shown 

[Jackson, 19621 tha t  the medium’s index of r e f r ac t ion ,  

n ,  i s  given by 

where w i s  the frequency of the propagating e lec t ro-  

magne$ic wave 

The above r e l a t i o n  implies that  transmission 

obtains when w > w and t h a t  a t tenuat ion  and r e f l e c t i o n  

r e s u l t  when w c’w The fmportance of To& and 

Langmuir’s dynamical approach t o  t h i s  c h a r a c t e r i s t i c  

frequency l i e s  on the f a c t  it sheds some l i g h t  on the 

mechanical nature of t h i s  per iodic  process, 

P 

P 
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1,2 Non-Eauilibrfum S t a t i s t i c a l  Mechanics 

Two decades l a t e r ,  Vlasov [ Vlasov, 19451 proposed 

t h a t  the  problems of  ionized gas physics could be more 

adequately t r ea t ed  by the methods and concepts of 

c l a s s i c a l  s t a t i s t i c a l  mechanicso He showed that  the 

Liouville equation leads t o  t h e  familiar t ransport  

equation 

- -  
where F ( r , u , t )  i s  the probabi l i ty  of f inding an electron 

in dr3 centered a t  F, and i n  du3 centered a t  

t ;  a i s  a smooth accelerat ion suffered by an e lec t ron  

due t o  a smeared out po ten t ia l  created by the presence 

ofmany other charged p a r t i c l e s  in i t s  v i c in i ty ;  

a t  time, - 

i s  a v io len t  r ed i s t r ibu t ion  of the e l e c t r o n g s  63 collo 

point in six dimensional conf iguration-velocity space 

brought about by a close binary c o l l i s i o n  e i t h e r  

between an e lec t ron  and an ion or an e lec t ron  w i t h  a 

second e l ec t rono  

VBasov then proposed that the solut ion of the 

above equation coupled t o  that of the  associated four  

Maxwell r e l a t i o n s  would const i tute  a complete descrip- 

t i o n  of the plasma s t a t e o  It is  from t h i s  point that  

much of the subsequent work i n  the  quant i ta t ive  de- 

s c r i p t i o n  of plasma phenomena proceedso In t h i s  work, 

however, we shall  n o t  concern ourselves w i t h  the  
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va l id i ty  of t h i s  s ing le t  density t ransport  equation but 

r a t h e r  assume the l a t t e r  and demonstrate i t s  so lu t iono  

It is  important t o  note here t h a t  the  system i s  

composed only of e lectrons,  pos i t ive  ions under various 

degrees of ion iza t ion ,  and of neut ra l  gas atoms a n d / o r  

moleculeso Although a l l  the p a r t i c l e s  of the system 

obey a t r a n s p o r t  equation, we s h a l l  assume t h a t  the 

d i s t r ibu t ion  function for a l l  p a r t i c l e s  except e lec t rons  

i s  constanto We may readi ly  j u s t i f y  t h i s  simplifica- 

t i o n  by remembering tha t  a l l  other p a r t i c l e s  are a t  

l e a s t  1836 times more massive than the e lec t rono  It 

i s  f o r  t h i s  reason t h a t  we may speak of a uniform ion 

background which i s  such that  the system i s  i n  an over- 

a l l  neutral  s t a t e o  

l,3 Mic soscopl-: . and Macroscopic Descriptions 

There e x i s t  t w o  major approaches t o  the solut ion 

of the above mentioned s e t  of f i v e  coupled p a r t i a l  

d i f f e r e n t i a l  equations, The f irst  cons is t s  i n  the 

l i nea r i za t ion  of the t ransport  o r  Boltzmann equation 

and the subsequent solut ion of the s e t  of equations v ia  

transform techniques, p a r t i a l  d i f f e r e n t i a l  equations 

(Ansatz so lu t ion) ,  o r  'the method of normal modes, T h i s  

approach y ie lds  the value of a l l  Maxwell f i e l d  quanti- 

t i e s  and permits us t o  see how the plasma's d i s t r ibu t ion  
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function, F, var ies  as a function of r ,  u,  and t .  

T h i s  first method is  usual ly  referred t o  as the mirco- 

scopic descr ip t iono  The second approach cons is t s  i n  

multiplying the l inear ized  t ransport  equation by 1, 

, respect ively,  and in tegra t ing  the  r e s u l t s  mG and 

over a l l  ve loc i ty  componentso T h i s  y i e lds  the contin- 

u i t y ,  momentum t r ans fe r ,  and energy t r a n s f e r  equations, 

respect ively,  and together w i t h  the  four  Maxwell 

r e l a t i o n s  cons t i tu te  the so-called macroscopic descrip- 

t i o n  of  plasma parameters. 

usual ly  ca l led  magneto-hydrodynamics , In the  following 

work, we shall  be concerned only w i t h  the former of 

these two methods, 

- -  
mgt-u 

This l a t t e r  approach i s  

1,4 Purpose 

In t h i s  work, we s h a l l  show t h a t  the normal mode 

approach t o  the solut ion of the  t ransport  equation 

which was f irst  c l e a r l y  expounded by R e  M e  Case [Case, 

19591 and l a t e r  extended by Shure [Shure, 19621 can 

a f t e r  some modification of the l a t t e r ' s  work be 

applied t o  the  solut ion of the i n i t i a l  value problem 

f o r  the  case of a temperature dependent plasma immersed 

i n  a constant,  outside applied magnetic f i e l d ,  

Furthermore , the re la t ionship  between the two approaches 

w i l l  be demonstrated and a pa r t i cu la r  i n i t i a l  value 



problem w i l l  be considered in some d e t a i l ,  

In order t o  enable ourselves t o  compare r e s u l t s  

w i t h  those of  Landau and t o  out l ine the def ic ienc ies  

i n  other approaches, we have f e l t  it useful  t o  include 

a b r i e f  descr ipt ion of these other techniqueso These 

w i l l  include the transform, Ansatz and s ta t ionary  

phase approaches 

l05 Transform Techniaues 

The first successful attempt a t  the solut ion of 

the transport  equation f o r  the case of a temperature 

dependent gas i s  a t t r i bu ted  t o  L o  D. Landrru[Landau91946]. 

He showed t h a t  the l inear ized  Boltzmann equation f o r  

the  case of no co l l i s ions  and where the only force 

term was due t o  the strong l o c a l  e l e c t r i c  f i e l d s  

could, i n  pr inc ip le ,  be solved by transform methodso 

H i s  l inear ized equation was 

where he assumed tha t  
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A Fourier transform of the space var iable  and a Laplace 

transform of the time lead t o  the transform equations 

and 

where 

Taking the inverse transforms of these functions then 

completes the  solut ion and yields  f ( z , u , t )  and cp(z,t) 

f o r  any time, t 2 0, 
Landau's major contribution came as a r e s u l t  of 

an invest igat ion of the poles i n  the expression f o r  

The so lu t ion  t o  the equation 
%,k 

duz = o  
"dF 2 

( l o l l )  1 -  4nie no i_ < 7 i F q - T  

l eads  t o  the dispersion r e l a t ion  which bears h i s  name:: 
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where 

, Debye length9 

k h D  << 1; t h i s  i s  the approximation condition used t o  

derive the dispersion r e l a t ion .  TheDebyelength i s  the 

e f fec t ive  range of in te rac t ion  between t w o  charged 

pa r t i c l e s .  All charged p a r t i c l e s  a t  a distance grea te r  

than A D  from a p a r t i c u l a r  e lec t ron  form a neu t r a l  

background and therefore don ' t  exer t  forces  on it. 

Final ly ,  we see t h a t ,  i n  the l i m i t  of a cold plasma, 

Landau's r e s u l t s  reduce t o  those predicted by Tonks 

and Langmuir, namely, 

w -+w 0 

P 

1.6 Ansatz Solutions 

Although a s t r i c t l y  chronological development of 

the subject would d i c t a t e  that  we consider the Bohm and 

Gross contribution a t  t h i s  point ,  [ B o b  and Gross, 19491, 

a f a r  greater  ins ight  i n t o  the mathematical i n t r i c a c i e s  

and t h e i r  possible p i t - f a l l s  can be obtained by next 

outl ining the main r e s u l t s  of a paper wr i t ten  by Berz 
I 1  1 [Berz, 19561 . He w a s  able t o  show t h a t  the "Ansatz 

1 

There seems t o  e x i s t  some confusion in  terminology I 

hereo  The German equivalent t o  subs t i t u t ion  i s  E r s a t z  
whereas Ansatz means a 
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or subs t i t u t ion  method first employed by Vlasov and 

l a t e r  by B o b  and Gross leads t o  p a r t i c u l a r  solut ions 

of the t ransport  equation and t o  an incorrect  dispersion 

r e l a t ion .  The O&satz'g method cons is t s  i n  the a p r i o r i  

assumption t h a t  a l l  quant i t ies  having r and t as 

arguments vary a s  
- -  

exp i (k0 r  - w t ) o  

Berz assumed var ia t ions  of the  d i s t r ibu t ion  

function i n  one d i rec t ion  only and l inear ized  the 

t ransport  equation as did Landau, i e e o  

where 

J -00 

Assuming that  

i ( k z  - wt) (1016) E ( z , t )  = Eo e 

but 

and in se r t ing  i n t o  the above gives 

and 
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The solution of the transformed Boltzmann equation can 

be obtained by ordinary means and i s  

where C(uz) i s  the in tegra t ion  constant of the equation. 

Its specif ic  form as a function of veloci ty  can be ob- 

ta ined only by imposing the i n i t i a l  conditions. 

Inser t ing the above r e s u l t  i n t o  equation (1.19) 

gives us the dispersion re la t ion :  

0 0 

Berz then argued on physical grounds t h a t  the 

dispersion r e l a t i o n  should be independent of time. 

Consequently, only those ve loc i ty  functions,  C(u,> , 
may be chosen which do not inval idate  t h i s  assumption. 

Such a function i s  

Integrat ing i n  the complex plane y i e lds  
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00 - dFO 

(uz - E) 
lcC 0 (1.23) ( -$=\duz w -  duz + i n  *O - 

-a0 

where the s ign of the second terms depends on the  pa th  

of in tegra t ion  and the imaginary p a r t  of w/k is  

assumed t o  be zeroo 

by considering f ( z 9 u , t )  a t  t = O o  We have 

The value of Co may be obtained 

A t  t =O, t h i s  becomes 

Assuming t h a t  f ( z ,  ow/k,O) # 0, Berz arr ived a t  the 

conclusion that  

which implies that  

The work of Bohm and Gross would lead us t o  conclude 

that 
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d'Z 

wheke the i n i t i a l  conditions are  neglected. There 

e x i s t  no physical reasons ju s t i fy ing  the assumption 

dF (w/k 1 
t h a t  du be zero.  It i s ,  however, a d i r e c t  

r e s u l t  of applying the subs t i tu t ion  method t o  the 

problem. 

Finally,  we may c r i t i c i z e  Berz on h i s  choice of 

the function, C(uz). 

the dispersion r e l a t i o n  wouid be val id;  another va l id  

choice would be 

Any f&ctlon eliminating time from 

o r  

where G(uZ) i s  any function of uZ. 

Indeed, the number of va l id  choices i s  l i m i t l e s s  

and each new choice gives r i s e  t o  a new dispers ion 

re la t ion .  

As we can see from the above, the Ansatz method 

and Berz's approach leave much t o  be desired i n  the 

solution of the transpopt equation, 
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l 0 7  Stationary Phase 

V a n  Kampen [van Kampen, 19551 proposed t h a t  the  

d i f f i c u l t y  i n  dealing w i t h  a pole a t  w = k u  has nothing 

t o  do w i t h  the  physics of the problem but r a t h e r  i s  

due t o  the i n a b i l i t y  of the mathematical procedures 

used t o  t r e a t  the  case of a continuous ve loc i ty  

d i s t r ibu t ion .  H i s  paper of fe red  a mathematical 

technique t h a t  permits the use of the so ca l l ed  

s t a t iona ry  wave approach i n  the case of a continuous 

non vanishing ve loc i ty  d is t r ibu t ion ,  noFo(u) V a n  

Kampen l inear ized  the transport  equation i n  the usual 

fashion and obtained f o r  the co l l i s ion le s s  case 

where 

Let t ing  

and in se r t ing  i n t o  the l inear ized equation gives 

Van Kampen f u r t h e r  simplified h i s  equations by assuming 

t h a t  2 
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(a) k i s  i n  the z d i rec t ion  

(b) the equilibrium ve loc i ty  d i s t r ibu t ion  i s  i so t rop ic  

i . e  

o r  

- aFo 
(1036) T u F  = au . 
T h i s  meant t h a t  

He then defined 

which implied t h a t  

where the r e s u l t  t h a t  

2 dux du = -2tcFo(uz) Y (1.40) 

and def in i t ion  t h a t  

f 

were used. 

It i s  a t  t h i s  point t h a t  the  problem requi res  some 
I 1  spec ia l  a t ten t ion .  There had been several  a p r i o r i "  
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prescr ip t ions  given f o r  the integrat ion across the  pole 

but every d i f f e ren t  approach gave a d i f f e ren t  d i s t r ibu-  

t i o n  funct iono Since every prescr ipt ion consistent 

w i t h  the d i f f e r e n t i a l  equation and the i n i t i a l  condi- 

t i o n s  i s  a va l id  solut ion t o  the t ransport  equation and 

since the l a t t e r  has been l inear ized,  it f o l l o w s  tha t  

a superposition of a l l  s ta t ionary phase solut ions is 

a l s o  a so lu t iono  V a n  Kampen's contribution came as a 

r e s u l t  of a basic  change i n  the consideration of 

so lu t ionso  Extending allowable solut ion t o  d i s t r ibu t ions  

i n  the  sense of Lo Schwarte [ Schwartz 19501 he 

allowed solut ions of (1.39) t o  take the fo rm 

where P ind ica tes  that  the Cauchy principal value of the 

r e s u l t i n g  in t eg ra l  i s  t o  be taken and the symbol, 

b(w-kuz) represents the  Dirac d e l t a  function, 

a lgebraic  form of the functionX(v,k) i s  determined by 

the  normalization condition expressed by equation (1041)0 

The 

Let t ing the d i s t r i b u t i o n  function assume such a 

character  might a t  first sight seem somewhat unorthodox 

but i t s  form can be readi ly  j u s t i f i e d ,  Consider the  

Boltemann equation f o r  the case where c o l l i s i o n s  are  

important and assume t h a t  the co l l i s ion  term i s  of the 

form 
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where c = constant. 

Applying the very same 

would give 

procedure as outlined above 

In the  l i m i t  of zero co l l i s ions ,  t h i s  becomes 

[Dirac, 19581 This i s  a t  l e a s t  a p l a u s i b i l i t y  

argument ju s t i fy ing  the form of the d i s t r ibu t ion  func- 

t i o n ,  g<u,). 

Returning t o  van Kampen's s t a t iona ry  phase 

solut ion (1.42) and applying 

(1041), we obtain 

the normaliaation condition 

which gives a prescr ip t ion  f o r  determining 

The appearance of the new parameter, 

poss ib l e  t o  s a t i s f y  the consistency equation 

X(w,k) 

X ( w , k ) ,  makes it 



- 1 7  - 

without having t o  r e l a t e  w t o  k o  

F ina l ly ,  van Kampen was able t o  show tha t  the  

per turbat ion d i s t r ibu t ion  w a s  given by a superposit ion 

of s ta t ionary  waves such t h a t  

where the only s p a t i a l  var ia t ion i s  i n  the z d i r ec t ion  

and C(k,v) i s  an expansion coeff ic ient  the existence 

of which can be shown and whose algebraic fo rm depends 

on the i n i t i a l  conditions, 

Although van Kampen's work represents  a s i g n i f i -  

cant i n i t i a l  s tep  in the s ta t ionary wave approach t o  

t he  t ranspor t  equation, it is  limited by a r a t h e r  

unphysical assumption, namely, t h a t  Fo(Z) never be 

zero and contradicts  the conclusion made by Landau on 

t he  existence of  a dispersion r e l a t ion ,  The c l a r i f i -  

ca t ion  of these points  together w i t h  a major revamping 

of the  method of s ta t ionary phase w a s  the subject of a 

paper presented by K ,  Yo Case [Case, 1959) 

In the  remaining pa r t  of t h i s  work9 we w i l l  make 

an e f f o r t  t o  bring t o  l i g h t  the major points  of Case's 

method and t o  show how a modification of the work done 

by Shure [ Shure, 19621 

o r i g i n a l  paper, can lead t o  an e d c n s i o n  of the 

method's range of app l i cab i l i t yo  

an enlargement of Case' s 
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' I1 THE SOLUTION OF THE INITIAL VALUE PROBLEM FOR TBE 

CASE OF A CONSTANT OUTSIDE IMPRESSED MAGNETIC F I E L D  

The first complete appl icat ion of the normal mode 

analysis t o  the treatment of the t ransport  equation is  

due t o  Case [Case, 19591 and was l a t e r  amplified by 

Shure [Shure, 19621 . 
chapter t o :  

a e )  Delineate the m a j o r  fea tures  of the normal mode 

It i s  the purpose of t h i s  

technique and Shure' s contribution. 

b o )  Extend the work of Shure t o  the treatment of an 

i n i t i a l  value problem f o r  the  case of a plasma 

immersed in a constant outside imposed magnetic 

f i e l d  whose d i rec t ion  is  t h a t  of the longitudinal 

plasma o s c i l l a t i o n s o  Furthermore, we must s t i p u l a t e  

t h a t  the medium i s  characterized by an over-all 

charge n e u t r a l i t y  but may possess l o c a l  inhomo- 

genei t ies  i n  the  electron concentration. 

Indicate the re la t ionship  among Shure's work, the 

present endeavor, and the more l imited problem 

tha t  Case considered. 

We can best  achieve the above s t a t ed  purposes by 

c.)  

f i rs t  outlining the i n i t i a l  portion of Shure's  work. 

2 .1  Linearization of the  Transport Eauation 

Restr ic t ing our a t t en t ion  t o  those physical 
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systems t h a t  may be t r ea t ed  by the c l a s s i c a l  s t a t i s t i c a l  

mechanics, we may f ind  a f i r s t  order approximation t o  

m a n y  of the system's propert ies  by solving the t ransport  

equation together w i t h  the four Maxwell r e l a t i o m  The 

s ing le t  density t ransport  equation derived by Vlasov 

[Vlasov, 19451 i s  

where the  meaning of each term w a s  given 112 equation 

(103)0 

inherent l imi ta t ions  of our method, we s h a l l  elaborate 

In order t o  gain a cleareE ins ight  i n t o  the 

somewhat on the physical conditions t h a t  are  required. 

The accelerat ion,  a(r , t>9 i s  said t o  be smooth and the 

p o t e n t i a l ,  cp(F,t) smeared outo T h i s  imposes some 

r a t h e r  strong r e s t r i c t i o n s  on the type of system . tha t  

we may considero We must s t i pu la t e  tha% n>;B 1, 

i o e o  the product of the  undisturbed electron densi ty  

and t h e  -volume of ef fec t ive  interact ions"  defined 

by the  Debye length cubed must be much l a rge r  than 

uni ty .  Each charged p a r t i c l e  therefore sees many other 

charged p a r t i c l e s  i n  i t s  surrounding volume of 

- -  

9 9  

magnitude I) 3 

In  what follows, w i l l  not appear. We 

may i n t e r p r e t  t h i s  as signifying t h a t  binary co l l i s ions  

a re  extrediely infrequent or  t ha t  we are not i n t e re s t ed  

i n  va r i a t ions  of P ( r ,u , t )  that occur i n  the time i n t e r v a l  
- -  
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, 

! = 
I;;-7 I 

( 2 0 2 )  ( W c o 1 l  

Here , e i s  a cha rac t e r i s t i c  length of the system 

sa t i s fy ing  the condition t h a t  A ,  a n d F a n d  

T 9  are  the e lec t ron  ve loc i t i e s  before and a f t e r  the 

violent  i n t e rac t ion  of a binary co l l i s ion .  

In  passing, we may add tha t  a co l l i s ion  term of 

the type 

- -  
(2 .3 )  = - c f ( r , u , t )  

- -  
where c i s  a constant and f ( r , u , t )  i s  a d i s t r i b u t i o n  

function representing a small disturbance from the 

equilibrium s t a t e ,  may a l so  be considered although we 

s h a l l  not do s o  here, 

Final ly ,  we ar r ive  a t  the strongest r e s t r i c t i o n .  

The equation (2,l) is  non-linear since the accelerat ion,  

a 9  var ies  a s  the e l e c t r i c  f i e l d ,  which i n  tu rn  va r i e s  

a s  the  d i s t r ibu t ion  function, F’(r ,u,t)@ In order t o  

avoid the complications of non-linear techniques and 

s t i l l  consider many meaningful physical problems, we 

s h a l l  obtain a su i tab ly  l inear ized  t ransport  equation 

by placing fu r the r  r e s t r i c t i o n s  on the nature of the 

ionized system. Assuming the funct ion,  F ( r , u , t ) ,  t o  

represent an electron d i s t r i b u t i o n  t h a t  i s  not f a r  

removed f r o m  the equilibrium dis t r ibut ion,  noPo(;) , and 

describing those r e l a t i v e l y  few e lec t rons  whose 

- 
- -  

- -  



. 

d i s t r ibu t ion  d i f f e r s  from those i n  the equilibrium 

s t a t e  by f ( r p u b t ) l )  w e  write 
- -  

where 

+ 

and no i s  the density of e lectrons i n  the equilibrium 

s t a t e ,  T h i s  supposes t h a t  the  humber of e lec t rons  

giving r i s e  t o  the loca l  e l e c t r i c  and magnetic f i e l d s  

i s  very small compared t o  the t o t a l  number of e lec t rons  

i n  the  system, Inser t ing  these conditions i n t o  the 

t ranspor t  equation and rernemberirig t h a t  1 has 
collo 

been s e t  equal t o  zero gives 

where the condition that noFo% f 

usedo 

the  case of a l o c a l  acceleration given by 

has not a s  yet  been 

Summarily dropping f w i t h  respect t o  noPo f o r  

- ( 2 0 7 )  - a - [ B ( r , t )  + %  (B,l\k +g(;,t))] 

would give incorrect  r e s u l t s ,  Ih the above: 

e = the  e l e c t r i c  charge and therefore represents  a 

negative quant i tyo 

m = the  mass of the e lec t rono  

E ( F p t )  = the e l e c t r i c  f i e l d  caused by the  l o c a l  
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inhomogneities i n  the e lec t ronic  concentrationo 

B(?,t) = the associated or self-consistent magnetic 
- 

f i e ld  due t o  the electron currents  and r e l a t ed  

t o  E ( r , t )  vis. the Maxwell equations, 
- -  

Bo% = a constant outside imposed magnetic f i e l d  whose 

magnitude i s  such that  it remains constant 

throughout the ionized medium and whose d i rec t ion  

i s  tha t  of the longitudinal plasma osc i l l a t ions  

i .e .  the  k or z d i rec t iono  

It i s  important t o  note a t  t h i s  point t h a t  Case 

[Case, 19591 drops the self-consistent magnetic f i e l d  

i n  h i s  treatmento Although, t h i s  i s  usually quite 

small due t o  the u/c f ac to r ,  the present approach w i l l  

include the e f f e c t o  

Imposing two more l imi ta t ions  on the! system permits 

an adequate treatment of the accelerat ion term i n  the 

t ransport  equation. Supposing t h a t  the  i n i t i a l  distri- 

bution Fo(u) i s  i so t ropic  i n  ve loc i ty  and that  the 

perturbed d i s t r ibu t ion ,  f ( r , u , t ) ,  va r i e s  s p a t i a l l y  only 

i n  the argument Z, we write 

- -  

(2,8) Po(U) = Fo(lul) 

(2,9) f(F,i i , t)  = f ( ~ , G , t )  

where equation (2.9) implies t h a t  a l l  f i e l d  quan t i t i e s  

vary only i n  z and t ,  i .e .  
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(2010) E = E(z , t )  

(2e11) s = E ( z , t ) o  

Keeping the above r e s t r i c t i o n s  i n  mind, we may wri te  

t he  f u l l  a o v u ( n o F o + f )  term as 
- -  

E - 7  F X(Bok+B) oTuF0 " - 1  - -  
(2,12) am ~ U ( n o F , + f )  = 7 u o  

e- - e -  A -  + m -Eo vuf + E(U )(Bok) 0 vuf + 5 ( E X E )  O T u f  

The th i rd  and f i f t h  terms on the r igh t  hand side of 

equation (2,12) are  dropped since they involve the 

product of t w o  f i r s t  order terms, The second term 

on the  r i g h t  hand side is  ident ica l ly  zero due t o  the 

i so t rop ic  nature of Fo9 i o e o  
c T 

(2,13) lcX(Bok+B) A - J  *TuFo P - (Boi \k+~)o(uX~UFo) .  

But, f o r  an i s t r o p i c  FO9 

(2014) F = 00 u o  

We may therefore  write the l inear ized Boltzmann 

equation f o r  the case of a co l l i s ion le s s  plasma under 

the  influence of a constant magnetic f i e l d  as 

It is  i n t e r e s t i n g  t o  note tha t  a constant. outside 

applied e l e c t r i c  f i e ld ,  Eo, would have introduced an 
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inhomogeneous term i n  the Boltzmann equation, i . e .  

~ o ~ \ J u P o o  
brium d i s t r ibu t ion  i s  the cha rac t e r i s t i c  that  permits 

such an introduction i n  the magnetic f i e l d  caseo 

The assumed i so t ropic  nature of the equ i l i -  

Finally,  we must add t h a t  our l i nea r i za t ion  of 

the transport  equation i s  va l id  only f o r  ce r t a in  

values of Boa 

order te rms  w i t h  respect t o  ~ ( ~ ~ B o k ) o ~ u f  4 

In equation (2 , l2) ,  we dropped the second 
A 

t h i s  

implies t h a t  

A 
(2 , l6)  %XBok ;4 B(2,t)  + t X B ( 2 , t ) o  

Clearly, our equations cannot hold f o r  the case where 

Bo i s  so  small t h a t  the l e f t  hand side of (Z0l6)  

becomes of the same order of magnitude as  the r i g h t  hand 

s ide ,  

the  three l a s t  terms i n  equation (2.12) vanisho 

They do hold ,  however, when Bo = 0 f o r  then 

2,2 The Maxwell. Equations i n  ComDonent Form 

The perturbed d i s t r ibu t ion  function, f ( ~ , C , t )  

gives r i s e  t o  the two f i e l d  quan t i t i e s  E ( z , t )  and B(2, t )  

and i s  r e l a t ed  t o  them via  the four  Maxwell equationso 

In component form, these are  

0 

(2.17) aEZ E 4xe 1 f ( ~ , u , t )  du3 
-0 
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(2,18) 

(2019) 

(2.20) 

(2*21) 

(2022) 

(2023) 

(2024) 

1 aBx aE 
9 = -  - 
a z  c a t  

o x -  aBZ 
a t  

L E = - -  a B  aEx + -  uxf(z ,u , t )  du 3 
-00 

- a z  c a t  C 

00 

3 
- E  1 s + 4 k e  u7f (z9u9 t )  du aBX 
az c a t  

aE 

-a0 
C 

o s - -  1 a ~ z  + -  4ae / m  uzf (z9u , t )  du 3 
-w c a t  

Combining equations (2,18) and (2,21) ind ica tes  t ha t  

B, = constanto Choosing any constant other than zero 

would, however, by physically meaningless since there  

e x i s t s  i n  the plasma no process t h a t  gives r i s e  t o  a 

constant magnetic f i e l d  i n  the z direct ion.  

2 o 3 Longitudinal and Transverse Mode Analysis 

The above s e t  of f i ve  coupled p a r t i a l  d i f f e r e n t i a l  

equations can be solved i f  instead of seeking solut ions 

of the  l inear ized  transport  equation as  it stands,  we 
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attempt: to eel- a modified first moment of  the l a t t e r .  

!buro a seltation is possible if we seek 

In  the above, g x ( z 9 u z 9 t )  and g Y ( z 9 u z 9 t )  are re fer red  

tQ as the transverse o r  x and y modes whereas g Z ( x , u Z 9 t )  

is called the longitudinal o r  z-mode. The d i f f e r e n t i a l  

equations s a t i s f i e d  by these f w c t i o n s  cap be obtained 

by multiplying the l inear ized  t ranspor t  equation by uq 

where a = x , y , z 9  and in tegra t ing  the r e s u l t  over the 

Pmge of ux and u i . e o  - 0 S u  

these operations on equation (2J5) and in tegra t ing  

by pa r t s  y ie lds  

u < + 00 e Performing x' y- Y 

, the  cyclotron frequency where hz i s  -= eBO 



4 

and where the  f a c t  tha t  F, i s  a,n even fwnctrlan of 

ve loc i ty  w i t h  the cha rac t e r i s t i c  thet  

1 - 0  I -.m 1-00 

was usedo Similarly,  we assume t h a t  

A comparison of the two transverse modee ind ica tes  

that the  intermode coupling fac tor  depends d i r e c t l y  on 

the  presence of the constant,  outside impressed magnetic 

f i e l d ,  Boo 

expected since the only preferred d i rec t ion  i n  the  

The symmetry between the equations is  

syste# i s  the z or longitudinal osc i l las ion  d i r ec t iono  

We a l s o  note that  %he z-mode of o s c i l l a t i o n  is totally 

unaffeeted by the presence of the magnetic f i e l d ,  Bok. 

The l a t + e r  i s  expected, bowever, since there  can e x i s t  

h 

10 no coupling between the 

f i e l d ,  Bo, i o e o  

current@', gZ(%,uz,t), and the 

Let us discuss,  a t  t h i s  point, the physical 

s ignif icance of the functions gx(z,uz,t)  

and g E ( z 9 u z , t ) a  

B y ( Z , U z 9 t )  

This can be done by considering the 
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def in i t ion  of e l e c t r i c  current densi tg  i o e .  

where S ( z , t )  represents  the e leo t ron  current dens i tyo  

However, we may consider T (z , t )  t o  be the uz in t eg ra l  

o f  

Consequently, we may in t e rp re t  the f u n c t i m s  ga(z,uZPt) 

defined previously a s  f o l l o w s  

- 
(2.38) g , (~,u, , t )  = to= 

a"Z 

(2040) gZ(z,u,9t) = $ 0 -  a3 
a u Z  

This implies t h a t  g,(z,u,,t) is  t h a t  component of 

electron current flowing along the  a d i rec t ion  and due 

t o  a l l  e lectrons whose u, component of veloc i ty  l i e s  

i n  the range uz t o  uz + du,. 



4 

2.4 Summary of the Transverse and Lonaitudiaal Modes 

w i t h  Corresponding Component Maxwell Eauations 

The problem has, theref ore , been reduced t o  solving 

the  following s e t s  of coupled equations 

x-mode (transverqe mode) 

y-mode (transverse mode) 

e-mode ( longi tudinal  mode) 
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(2.50j B, = o 

2 ,,5 The Normal Mode Approach to  ,the Solution of the Initial 

Value Problem for  the Longitudinal Mode 

The i n i t i a l  value problem for the  longitudinal 

mode ha6 been solved by Case, It i s  b r i e f l y  outlined 

here i n  terms of our notat ion f o r  it brings t o  l i g h t  

the main concepts of the normal mode approacho 

Consider a s p a t i a l  Fourier decomposition of the 

equations (2,47) and (2.49) such t h a t  

Equations (2,47) and (2,4g) then become 

a;5 (u, , t> + ih,& = - -ne Ek( t )  F'(u,) k a t  m 
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Making the assumptkon that the f m c t i o n s  have a time 

dependence of the t m e  e OikPt i . e o  

and introducing t h i s  i n t o  (2.53)*&d (2,54) y i e l d s  

where the k subscript  i s  dropped for convenienceo 

ThePe e x i s t s  some degree of a rb i t r a r ines s  a t  t h i s  point 

concerning the value t o  give the in t eg ra l  appearing i n  

eguations ( z 0 5 8 )  and (2059)0 3 i n c e  equation (2058) i s  

l i n e a r  i n  g 

any function of le and 9 , say 

(u,), we may normalize the i n t e g r a l  t o  

For  convenience, however, we l e t  y ( k p I ) )  = l e  

means t h a t  we are l e f t  w i t h  

This 

4rce (2,62) E,, = - fk 
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We must stop at  t h i s  point t o  consider the ult imate 

goal of t h i s  procedureo We seek si set  of functions 

{g,, (uz)} which i s  complete i n  u2 md whose component 

functions, g 

f ixed frequency solut ions of (2.61). The s e t  of n o d a l  

(u,), are  the so-called noma1 mode o r  J 

mode solut ions i s  comple%e i n  the 8en6e that  any 

function, G(uz), may be expressed as a sum of d i sc re t e  

normal mode solut ions plus an i n t e g r a l  over the 

continuous normal mode solutions, i. e .  

In order t o  f i nd  the expansion coe f f i c i en t s ,  aa(k,L/,) 

and Ak(d) 
solutions t o  the so-called addoint which i s  chosen such 

that  i t s  solut ions,  g+ ~ ( u ~ ) ~ a r e  orthogonal t o  the 

solutions 6 (u) , over the range -0, u, OD whenever 

the  normal mode indices ,  9 and d '  are  d i f f e ren t .  

Returning now t o  equation (2.611, we see that  i t s  

solution may be segregated in%o various classes .  

however, we must a l s o  find the  normal mode 

9 

Class 1. 

Here, r/ i s  complex w i t h  a non-zero imaginary 

pa r t .  Therefore, we have 

A 

where L'j i s  a root of 
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'3 /- 

C 4 s s  ?aa 

Here 3 i s  r e a l .  Lett ing the noma1 mode solut ion 

assume the character of a d i s t r ibu t ion  i n  the sense of 

Schwartz, [Schwartz , 19503 we obtain 

where P ind ica tes  that  the Cauchy pr inc ipa l  value of 

the r e su l t i ng  in t eg ra l  must be taken and b(uz -3 )  i s  

the Dirac d e l t a  functiono The function A (  9 ) is  

determined by 

C h s s  2bo 

Here, I/ is  r e a l ,  but F ' ( 9  ) = O o  We again 

obtain the solut ion indicated for c l a s s  2a but, i n  t h i s  

case, the pr inc ipa l  value sign i s  not needed. 

Class 2c 0 

Again, I! is  r e a l  but P ' ( d  ) -A(  ) = 0. 

Consequently the solut ion is  
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and 

Fs (u,) 
(2,69) 1 = 'W dUZ 

-00 

These solutions are analogous t o  the d i sc re t e  solut ions 

f o r  the case of  a complex value for 3 

2,5,1 The Adjoint Eauation 

The associated adjoint  function s a t i s f i e s  the 

following algebraic equatidn 

where we normalize the in t eg ra l  t o  unity. Consequently, 

we have 
A 

2 5 2 Orthogonalitg: 

The above adjoint  equation was chosen such t h a t  

i t s  solut ion g+)lt (uz) would be orthogonal t o  g (u,) 

over t h e  range of in tegra t ion ,  - - S U ~ < + - ~  

r ead i ly  be seen as follows. 

g+3,(u,) and (2,71) by g 

r e s u l t s ;  t h i s  gives 

This may 

Multiply (2.61) by 

(u,) and subtract  the 9 

A 
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Integrat ing over the range of veloci ty  of u, yie lds  

r w  

Consequently, we may write 

This demonstqates orthogonality. 

20503  So,lutions of the ALioint EQuatiOn 

The equation (2,713 l i ke  equation (2061) has sever- 

a l  solut ions tha t  must be separated-into various classes, 

Class 1 

Here, 9 i s  complex w i t h  a non-zero imaginary p a r t o  

Theref ore we have 
rn 

where y’j i s  a discreteroot  of  

This i s  seen t o  be i n  agreement with the r o o t  as found 

i n  equation (2,65), 

Class 2a 

Here, d i s  r e a l o  Again, admitting d is t r ibu t ions  

ia the  sense of Schwartz, we have 
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A 

J 

where A+( 3 ) i s  determined by 

-W 

Consequently, 

Class 2b 

Here, 9 i s  again r e a l  but F' ( 3  ) = 0. We must a l s o  

s t i pu la t e  that 

cannot be similar i n  form t o  t h a t  of c l a s s  2a since the 

condition expressed by equation (2079) cannot be satis- 

f i e d o  A consistent solut ion is  

A( 9 )  & O o  The solut ion in t h i s  case 

Inser t ing  th i s  i n t o  equation (2.70) gives 

Thia i s  an i den t i ty ,  

d i s t r ibu t ion  solut ion i s  consistent with the adjoint 

e quat i o n  

Class 2c 
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Again, 9 i s  r e a l  but  F(r! ) = A ( d  = 0, 

Consequently, the solut ion is  

3 

where Qi  i s  a d iscre te  r o o t  of 

2.5.4 The Normalization Coefficients 

Returning t o  the r e s u l t s  of the orthogonality 

re la t ion ,equat ion  (Z074) , we now discuss  evaluation 

when V =  9' for the  d iscre te  and continuous caseso 

Discrete Case P 

For the case where 3 = $ '  equation (2.74) becomes 

/ a b  

where r / ,  represents  the Uiscrete normal mode index and 

may be r e a l  o r  complex and N( ga) i s  the normalization 

coef f ic ien t  f o r  the d iscre te  caseo Inser t ing  the 

proper normal mode solut ions in to  the above gives 

where u a  represents  the r e a l  o r  complex d iscre te  r o o t s ,  

Continuous Case: 
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The normalization coef f ic ien t  f o r  t he  continuous 

case may be derived i n  the same manner as t h a t  f o r  the 

d iscre te  case but a l i t k l e  care i s  needed i n  performing 

the in t eg ra l  over the product of the two s ingular  

functions,  g (u,) and g+ (u )o Symbolically, we f ind  r, v z  

where 

Extreme care must be exercised i n  the i n t e rp re t a t ion  

of equation (2,86). A r a the r  de ta i led  treatment of 

the normalization coef f ic ien t  f o r  the continuous case 

i l l u s t r a t i n g  the use of the Poincarg-Bertrand t rans-  

formation [Muskhelishvili, 19531 w i l l  be given i n  the 

consideration of the x and y mode solut ions.  

20505 The Expansion Coefficients 

Case [Case, 19591 was able t o  show that  the s e t  

of functions, { g, (u,)} i s  complete i n  uz such tha t  

any function of uz may be expressed i n  terms of these.  

Specif ical ly ,  he showed the existence of the expansion 

coeff ic iencts ,  aa(k, qa) and A k ( 9  ), i n  the expression 
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where &(usgo) i s  the i n i t i a l  value of Ek(ut, t) .  The 

expansion coe f f i c i en t s  may therefore be obtained i n  a 

straightforward manner, 

Determination of aa(k, )la) 
Multiplying ( 2 , 8 8 )  by g+ (u,) and integpating 

)'a 
the  r e s u l t s  over uz gives 

Determination of Ak( )) ): 

Similarly,  we multiply (2,88) by g; (u,) and 

i n t eg ra t e  over ue; t h i s  yields  

205n6 Final  Solution t o  the Longitudinal Osc i l la t ion  

Problem 

We are  now i n  a posi t ion t o  express the answer 

t o  the longi tudinal  o sc i l l a t ion  problem, A t  any time, 

t l O ,  we may write 

and remembering tha t  
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and 

we obtain 

Taking the inveree Fourier space transform of the above 

gives us theref  ore 

Actually, we must multiply ( 2 * 9 5 )  by uz t o  obtain 

g,(e,u,,t) ioee 

This then completes the solut ion for we now have the  

0 1  current", gz(e,uz9t),and the p o t e n t i a l ,  v ( ~ , t ) ,  as 

functions of t h e i r  arguments, 

implies t h a t  we know E ( z , t ) ,  

This  b r ie f  out l ine on the normal mode analysis  of 

The l a s t  quant i ty  a l s o  

the longitudinal o s c i l l a t i o n  problem i l l u s t r a t e s  the 
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major fea tures  of the method and should render our 

treatment of the transverse modes somewhat e a s i e r ,  

2.6 BiRh t  and Left Circular ly  Polarized Modes 

The coupled nature of the transverse modes of 

o s c i l l a t i o n  requires  t h a t  we attempt a simultaneous 

so lu t iono  This can be accomplished by l e t t i n g  

where the plus  mode is referred t o  as r i g h t  c i r c u l a r l y  

polarized" and the minus mode i s  ca l led  s o  l e f t  

c i r c u l a r l y  polarized" 

combining the x and y modes gives 

Using these de f in i t i ons  and 

These three  equations are now i n  a form t h a t  permits 

the  use of the normal mode technique, 
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The above development leading t o  the formulation 

of an osc i l l a to ry  mode and two c i r cu la r ly  polarized 

modes is simply an amplification of the work done by 

Shure [Shure, 19621 The importance of t h i s  background 

formulation coupled t o  the r a t h e r  lixnited a c c e s s i b i l i t y  

of Shure' s d i s se r t a t ion  makes this r epe t i t i on  desirable  a 

It i s  a t  t h i s  point ,  however, t h a t  the development of 

Shurele work and t h a t  of the present t h e s i s  divergeo 

2 0 7  The I n i t i a l  Value Problem for  the Transverse Modes 

and the Matrix Formulation 

The purpose of Shure' s d i s se r t a t ion  consisted i n  

f showing tha t  the functions g ( e 9 u 9 t )  and the f i e l d  

quant i t ies ,  E+(z , t )  , B+(z,t) could be determined 

provided t h a t  t h e i r  values were known a t  ce r t a in  

boundaries f o r  a l l  times, I n  solving the above 

- - 

boundary value problem, he Fourier analyzed the time 

variable and assumed t h a t  the space var iable  of the 

quant i t ies  g+, E+ and B+ varied a s  e i(w'3)z where - - - 
t' i s  the normal mode (van Kampen c a l l s  it s ta t ionary  

mode) indexe Combining the three  quan t i t i e s ,  gL,y 

YLjd 9 
E B , i n t o  a so-called " s t a t e  vector' '  , 

t , S 9  f J V  
and defining a new @ '  adjoint  s t a t e  vector" 
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(2.104) y+9 - 

such t h a t  the two vectors would be orthogonal whehever 

t h e i r  normal mode indices d i f fe red ,  he was able t o  

show the existence of a complete s e t  of functions,  

This was the object of h i s  work f o r  he could then 

express 

(2,105) y = 
(no normal mode 

index) 

{ y.J i n  terms of the complete s e t  o f  functions 

It is  the purpose of t h i s  work t o  show v ia  the methods 

of normal mode analysis  t h a t  there e x i s t s  an analogous 

complete s e t  of functions tha t  permits the  solut ion of 

t he  associated i n i t i a l  value problem. 

In order t o  f a c i l i t a t e  notation i n  what f o l l o w s ,  

g+(z,uZ,t) w i l l  simply be designated as g(z,u, , t)  and 

s imi l a r ly  f o r  E+(z , t )  and B + ( Z , ~ ) ~  The more complete 

nota t ion  w i l l  be reintroduced a t  the endo 

- 
- - 

Returning t o  the three c i r cu la r  mode equations, 

(20101), (2*102), and (2.103), and taking a Fourier 
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transform of the space variable such t h a t  

gives 

where the new functions g ( u z , t ) ,  B( t )  and E ( t )  each 

carry a k subscript .  T h i s ,  l i k e  the  + and - subscr ipts  

t h a t  *he above functions should carry,  i s  not e x p l i c i t l y  

introduced i n  order t o  avoid the confusion t h a t  i s  

encountered when the normal mode indices  are  inser ted .  

Rewriting the above i n  the matrix form and 

defining t w o  new quant i t ies ,  and H y i e l d s  

aY (2.112) at = H\fi 

( 1  where y /  i s  a three element s t a t e  vector " defined 

by 
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(20113) Y! E [:;;:I 
I 

and H is an i n t eg ra l  matrix operator given by 

+ kc 3 0 

i ( LQ-ku, ) ne m F(u,) 

(2,114) H = -4nel 0 

0 - + kc 

In order t o  f ind  the necessary normalization coef f ic ien t  

and t o  determine the expansion coe f f i c i en t s  aa( Pa8k)and 

Ak($ ) 9  we also define an adjoint matrix equation given 

by 

where 

This l a s t  s t i pu la t ion  w i l l  serve as our orthogonality 

condition 

z07,1 Adjoint Equation 

The component elements of the matrix operator H+ 

can be determined by using equation (2,116) where we 

define the inner product ( x'p\pI ) as 
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where )(' i s  a three element row vector given by 

( 2 d 1 8 )  x+ ( G + ( U ~ ) ~  e+, b') 

Using these de f in i t i ons  and remembering t h a t  i n  our 

case 

I yie lds  

i ( +Q-ku,) I 
(2,120) H+ = 1 -4xe 0 

.+, ck 

0 

- + ck 

Q 

The usefulness of the above w i l l  become evident when 

the  hormal mode adjoint  equations are  solvedo 

2 , 7 6 2  The Normal Mode Solutions 

Returning now t o  equations (2.109), (20110), 

(2,111), we propose t h a t  the time dependence is of the 

form e -ik9t such tha t  

-ik$ t (2,121) g h , , t )  - g,! (u,) e 

which implies t h a t  

- i d  t (2,122) E ( t ) - $  E$ e 

(2,123) B ( t ) d  BJ e - i k J  t 
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where the index, t) , is  a complex var iable  and may be 

continuous or d i sc re t e  e Inser t ing these quan t i t i e s  

i n t o  the  equations (2.109), (2,110) and (2,111) y i e lds  

- 
(2.126) 1 $ B U  

where we must keep i n  mind tha t  the quant i t ies  g,, (uz), 

E,J 

- + c E,, 

and B3 should be wri t ten $ - + 9 ,k (uz )*  E+ )J,k and 

respectively.  
B+ 3,k’ 

It must now be remembered t h a t  E i s  an expansion 3 
coef f ic ien t  such t h a t  

and where B+k(t) and g+k (u,,t) a re  of the same form f o e ,  - - 
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where aa(k, pa) and Ak($ ) are expansion coe f f i c i en t s  

whose algebraic forms w i l l  be determined. What i s  

important t o  note i s  tha t  the choice of e i t h e r  E,, o r  

B,J i s  a r b i t r a r y  since it i s  the product of a E 9 

and A k ( 3  )E,, , and a B and Ak( 9 )B,J which 
a % 

w i l l  determine the quant i t ies  g+k(u, 't),  E+k(t), and 

a l t e r s  aa and B+k(t)e 

A,(S) only and not the three quan t i t i e s ,  g+k' E+k 

- - 
3 A p a r t i c u l a r  choice of E - 

- - 
and B+ko 

point by simply s t a t i n g  t h a t  the equations (2.124), 

(2.125), (2,126) are l i n e a r  and homogeneous i n  the three 

quant i t ies ,  g 

choice f o r  E9 i s  

Shure [Shure, 19621 resolves  a s imi la r  - 

A convenient 9 "  (u,), E 9  , and B 3 

This implies t h a t  our equations become 

- 4xce (2,133) B V  = + - k 

We may now consider the solut ions of the above. 

Again t h e  allowed solut ions t o  (2,131) must be broken 

up i n t o  various classes .  
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Class 1 

These are  the solut ions f o r  complex 9 values9 

t h i s  means t h a t  

where ,'j are the r o o t s  of the equation 

Class 2a 

In t h i s  c l a s s  of solut ions,  we a l low d i s t r ibu t ions  

i n  the sense of Schwartz and l e t  g,, (u,) take the  f o r m  

where 9 i s  a r e a l  and continuous var iab le ,  The 

symbol P ind ica tes  t h a t  the pr inc ipa l  value of  the  

r e s u l t i n g  in t eg ra l  i s  t o  be taken and b(u, -9 f )  
represents  the Dirac d e l t a  functiono The function 

h( 9 ) = A,($ ) i s  determined by the aux i l i a ry  

condition (2,132) i , e ,  
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Class 2b 

In t h i s  case, 9 i s  again r e a l  but F()) 2 %, = 0, 

Again 

and a ( $  ) i s  determined by the aux i l i a ry  condition 

Here, the p r inc ipa l  value s ign i s  not needed but i s  

indicated t o  d i s t inguish  t h i s  case from Class 2c0 

Class 2c 
sz 9 i s  r e a l ,  F ( $ +  I;)= 0 and h(r)) = O o  Here, 

Consequently, we have 

and 

2 0 7 0 3  Solutions t o  the Ad,Ioint Equations 

Using the de f in i t i ons  expressed by equation (2,115) 

and the evaluation of H+ given i n  equation (20120)Q we 



obtain the three adjoint equations 

where we should w r i t e  gf&u,t) ,  E Ik ( t )  and B f k ( t ) ,  

Again, we assume t h a t  
- - - 

-fk S t  

-fk J t 
(2,146) B+(t)  J B; e 

(2,147) E+( t )  Y E;e 

Inser t ing  t h i s  in to  the adjoint equations (20142), 

(2,143) and (2,144) gives 

(2,148) i[k(u, - 3 )  'QIg; = -4xeES 

- 
(2,149) -ik$BS = + kcES 

A convenient choice of E; is  

ne 4 
mk (2a l5 l )  E; = -f - 

This reduces the adjoint equations t o  
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- ne@ 
(2,154) B S  = * m% 

The reason f o r  choosing E* 9 a s  we d id  can hardly 

be obvious a t  t h i s  po in to  

c l ea r  that the  choice is a t  l e a s t  self-consis tent ,  i o e o  

t h e  adjoint  equations are  l i n e a r  and homogeneous i n  

the so-called f i e l d  quant i t ies8 

B j e  
only reason f o r  considering the adjoint  equations i s  

t o  f ind a s e t  o f  functions,[\4!; (u,)g(adjoint s t a t e  

vectors) t h a t  w i l l  be orthogonal t o  the  physical 

system’s s t a t e  vector s e t ,  {y,$uz$o which i s  complete 

fn uz i n  the sense t h a t  any vector,  G(uz,O) may be 

It must, however, be made 

g+ (u 1,‘ E; , and 9 ,  
We must constantly bear i n  mind here t h a t  the 

expanded as a l i n e a r  combination of the s e t ,  ( Y p z $  
We may now concentrate on obtaining the solut ions t o  

t he  adjoint equations; these may also be considered 

as f a l l i n g  into various c l a s seso  

Class 1 

These are  the s o l u t i o m f o r  complex values of p 

w i t h  a non-zero imaginary p a r t o  Here we have 



8 

- 5 3  - 

and 

Class 2a 
62 In t h i s  case, 9 i s  r e a l  and F ( 9  2 E) # 0, 

Considering d i s t r ibu t ions  i n  the sense of Schwartz, 

we have 

where A+( ) is determined by the auxi l ia ry  condition 

where we see t h a t  

The above r e l a t i o n  i s  a 

E+ = g it will mk 

direct  r e s u l t  of choosing 

be seen that  the above i s  

very important i n  the determination of the normalization 

coef f ic ien t  f o r  the continuous case which w i l l  i n  tu rn  

permit us  t o  determine Ak( g)9 the  expansion coef f ic ien t  

f o r  the  continuous caseo 

Class 2b 
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Here, r/ i s  r e a l ,  F(d+ E a> * O  and h ( d ) f O o  
Here we must take E+ 

followingo We would have 

= 0, T h i s  i s  evident from the v 

h 

and 

o r  

as i n  equation (2,15g)0 Clearly,  t h i s  can not ho ld ,  

f o r  here F($+ E )  = 0 and A ( 9 ) # O o  A consis tent  

choice i s  E; - O b  
a 

This implies that 

(20165) BS = 0. 

Consistent with the  above is  

(2.166) g;(u,) = 6 ( u Z - 4 T  

The auxiliary condition then becomes 
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Thus our d e l t a  function solution leads t o  an i d e n t i t y d  

Class 2c 
a In t h i s  case, 9 = Ji i s  r e a l  and F( di 2 E )  = 

= 1 ( Qi) = 0, The solut ion t o  the adjoint  equation is  

-62 
Ji 

2 W 
(2,168) g+ (u,) = 2 

pi 

and the  auxi l ia ry  condition gives 

2,7,4 Orthogonality and Normalization Coefficients 

In  determining the adjoint s t a t e  vector y + s  we 
s t ipu la t ed  t h a t  

But remembering t h a t  

and introducing the normal mode time solut ions 



we arr ive a t  the orthogonality condition 

We must note i n  the above equation (2,170) i s  

simply the vector representation of equations (2,121) 

(2,122) and (2,123) and equation (2,171) s imi la r ly  

represents equations .(2.145), (2,146) and (20147)0 

Equation (2,172) implies t h a t  the s t a t e  vectors,  

Y + $ O  and Y,, are  orthogonal over the range of the 

integrat ion;  i n  t h i s  case, - -<uZL+-,  - Our uz 
orthogonality condition may be expressed as 

for the d i sc re t e  case, and symbolically, f o r  the 

continuous case, as  

where N( 3,) and N()) ) are the normalization coef f ic ien tso  

To determine the algebraic f o r m s  of N( oa) and N( 3 ) 
we must consider the various c l a s ses  of allowed 

solut ions,  Basically,  there  a re  only t w o  cases t o  
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considero The solut ions f o r  r e a l  and continuous 

values of 9 and those solutions f o r  d i sc re t e  values 

of 3 both r e a l  and complexe 

2,7,5 Determination of the Normalization Coefficierrts 

Turning now t o  equation (2,173) and introducing 

the  d iscre te  mode solut ions f o r  \h/',~ and y 9  
obtain 

we 

f "  

where 

r o o t s .  

v a  represents  the r ea l  and complex d iscre te  

Turning our a t t en t ion  now t o  the continuous case, 

we begin by expressing the f i n a l  solut ion t o  our 

problem i n  terms of a sum of d i sc re t e  normal mode 

so lu t ions  plus  an in t eg ra l  over a l l  continuous mode 

solut ions,  T h i s  means t h a t  w e  assume completeness and 

t h e  existence of  the expansion coe f f i c i en t s ,  aa(k, va) 
and Ak($ ) such t h a t  

Again, we must keep i n  mind the  f a c t  t h a t  not a l l  

subscr ip ts  are  shown; actual ly ,  we should add the Lgk  
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subscripts t o  each symbol, 

Multiplying the above equation by y ;  and 

integrat ing the r e s u l t s  y ie lds  

The term involving the sum is  seen t o  be zero since the 

continuous adjoint  s t a t e  vector,  v/ > w a s  chosen t o  

be orthogonal t o  the system's d i sc re t e  s t a t e  vector,  

!!! It i s  from the second term t h a t  we s h a l l  f i nd  

the  normalization coef f ic ien t  f o r  the continuous caseo 

Rewriting t h i s  second term i n  component form, expanding 

the results and introducing the  proper values f o r  EVo 

and B, ,Q yields 

3, 



a 
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I 
I 

d o o  du, 

The order of in tegra t ion  i n  the above i s  immaterial 

except i n  the f i r s t  i n t e g r a l o  Here we are dealing w i t h  

a doub4y singular i n t eg ra l  a proper treatment of which 

requi res  the use of the Poincare-Bertrand t ransf  orma- 

t i o n  Muskhelishvili 1953 ] Performing the d e l t a  

d i s t r i b u t i o n  integrat ions gives 

/ 

[ 



/ 
It i s  shown i n  appendix A how the use of the Poincare- 

Bertrand transformation and the method of p a r t i a l  

f rac t ions  reduces the above t o  

where I?($ ) i s  shown t o  be given by 

20706 Expansion Coefficients 

Assuming as we did  f o r  the  determination of N( f lu )  
and N($ ) tha t  the functions %! y 

complete s e t ,  we may express the t o t a l  solut ions as a 

sum of d i sc re t e  normal mode solut ions plus  an i n t e g r a l  

over a l l  continuous normal mode solut ions,  i oeo  

{ Qu bJ) form a 

Consequently, the d i sc re t e  mode coef f ic ien t  i s  given by 

where 
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Therefore, 

The continuous mode expansion coefficient may be 

obtained in a similar mannera We see f rom the above 

that 

where 
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Therefore, we may wri te  

(20188) A ( $  ) = 

The above ce r t a in ly  holds  f o r  ?/ i n  c l a s s  2a0 It also 

ho lds  for r) belonging t o  c l a s s  2b since then, 

20707 Final  Solution of the Transverse Osc i l la t ion  

Problem 

T h i s  then completes the treatment of the i n i t i a l  

value problem for the t ransverse modeso The three  

f i e l d  quan t i t i e s  are  given by 



where a l l  quant i t ies  t a c i t l y  carry the signs 

de8ignating whether we are considering the r igh t  o r  

l e f t  polarized modes, The measurable f i e l d  quan t i t i e s  

a re  given by taking the inverse space Fourier transform 

of the above quant i t ies ,  i o e o  

It must, however, be s t ressed here t h a t  the 

{yV),  i s  completemess of our s e t  of solutions,  

contingent on the existence of  the coef f ic ien ts  

a,(k, vu) and A k ( v )  which was assumed. 

t i o n  of t h i s  requires  the use of the methods of 

s ingular  i n t eg ra l  equations i n  the solution of an 

inhomogeneous Hilber t  problem. This r a the r  involved 

demonstration i s  considered outside the scope of the 

present endeavoro 

A j u s t i f i c a -  
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I11 APPLICATIONS 

I n  t h i s  chapter, we shal l  demonstrate the use of 

the  previously derived general r e s u l t s  by applying them 

t o  a few pa r t i cu la r  caseso T h i s  should br ing t o  l i g h t  

the d i f f i c u l t i e s  encountered i n  dealing w i t h  even the 

simplest problems 

3.1 An I n i t i a l l y  I so t ropic  Perturbed Distr ibut ion 

Let us  consider the transverse and longi tudinal  

mode solut ions f o r  the case where the  perturbed 

d i s t r ibu t ion  function i s  i n i t i a l l y  i so t rop ic  i n  

ve loc i t i e s ,  i . e .  

Referring t o  equations (2.25) and (2.26) y i e lds  

f o r  the transverse modes 

Consequently, the i n i t i a l  value3 of the  s p a t i a l  

Four i e r  transform of equations (3,2) and ( 3 . 3 )  are  

also zeroo If these r e s u l t s  coupled t o  t he  assumption 

t h a t  there e x i s t s  no f i e l d  q u a n t i t i e s  a t  times, t SO 
are inserted i n t o  equations (2,185) and (20188>, we 
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obtain for the  transverse case 

This then ind ica tes  t h a t  

Turning t o  the longitudinal case an8 considering 

equation (Z027), we obtain 

Taking the s p a t i a l  Fourier transform of gz(z ,uz90)  and 

in se r t ing  the r e s u l t s  i n t o  equations (2,89) and (2090) 

y ie lds  the expansion coef f ic ien ts ,  aa( t’,,k) and &($), 

f o r  the  longitudinal caseo Applying the l a t t e r  i n t o  

equations (2,911 and (2,941 and inse r t ing  these r e s u l t s  

i n t o  (2,96) and (z097) yields  g,(z,u,,t) and cp(z,t)o 

We may summarize by saying t h a t  a perturbed 

d i s t r i b u t i o n  t h a t  i s  i n i t i a l l y  i so t rop ic  i n  ve loc i t i e s  

gives r i s e  t o  the longitudinal mode but no transverse 

phenomena 

We might a l s o  add that it i s  possible by a proper 

choice of f (z ,u,O) t o  have transverse osc i l l a t ions  
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w i t h  n o  accompanying longitudinal mode ., 

3.2 Two Cases of  Monodfrectional I n i t i a l  Perturbations 

To fu r the r  i l l u s t r a t e  the use of our methods and 

t o  indicate the uncoupled nature of the transverse 

and longitudinal modes, we s h a l l  consider some 

monodfrectional i n i t i a l  d i s t r ibu t ions ,  Suppose tha t ,  

i n i t i a l l y ,  a l l  p a r t i c l e s  moved along the z d i r ec t ion  

such t h a t  

Inser t ing the above i n t o  equations (ze25) ,  (2,26), 

(2027) y ie lds  

The Fourier t r ans fo rms  of gx(z9u,,0) and g (z9uzpO) are  

s imi la r ly  zero and consequently equations (2,185) and 

(2,188) y ie ld  f o r  the  transverse case 

9 

where we assumed that  
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Consequently, the r e s u l t s  expressed i n  equations 

(3.61, ( 3 . 7 )  and ( 3 0 8 )  hold here a l so ,  

Considering now the longitudinal case and 

spec i f i ca l ly  equations (2,89) and (2.90), we have for 

the  longi tudinal  case 

Consequently, we may f ind  g,(z,u,,t) and cp(z,t), 

The above r e s u l t s  indicate t h a t  e lectrons 

i n i t i a l l y  moving along the osc i l l a t ion  d i rec t ion ,  z, 

w i l l  continue t o  do so  f o r  times, & > O  and w i l l  not 

give r i s e  t o  transverse phenomena 

To complete our present considerati9ps9 we shal l  

now examine the  case where electrons a re  i n i t i a l l y  

made t o  t r a v e l  i n  a direct ion perpendicular t o  the 

d i r ec t ion  of longitudinal osc i l la t ions .  Suppose t h a t  

Applying (3,19) t o  equations (2 ,25)  , (2,26) and (2,27) 

y i e l d s  



Taking the spat ia l  Fourier transform of equations 

(3,20), (3 ,2 l )  and (3,22) and applying the  r e s u l t s  i n  

the determination of the expansion coe f f i c i en t s  as 

w a s  done previously, ind ica tes  the existence o f  the 

transverse modes and the absence of longi tudinal  

phenomena, Therefore, we conclude t h a t  e lec t rons  

whose i n i t i a l  d i r ec t ion  of motion i s  perpendicular 

t o  the d i rec t ion  of longitudinal o s c i l l a t i o n s  w i l l  

continue i n  t h i s  perpendicular motion f o r  t > O  and 

w i l l  not give r i s e  t o  longitudinal e f f e c t s ,  

3 . 3  An Example Problem (LonRitudinal Mode) 

In  t h i s  sect ion,  we shall  consider one p a r t i c u l a r  

problem i l l u s t r a t i n g  the solut ion of  the longi tudinal  

mode of  o sc i l l a t ion ,  Consider the following t o t a l  

d i s t r ibu t ion  function 

where noFo i s  a Maxwell-Boltzmann d i s t r i b u t i o n  such 

that  
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and no i s  the electron density a t  equilibriumo 

next l e t  

We 

A 

Although any perturbed d i s t r ibu t ion  sa t i s fy ing  the 

condition t h a t  

(3028) n,Fo >> f ( z 9 U 9 t )  

would be va l id ,  the above w a s  chosen because of the 

mathematical s implici ty  tha t  it introduces i n t o  the  

r e su l t i ng  equations 

Using equationT (zO5l) , we have 
A 

We are now in  a posi t ion t o  determine Ak( r) ) and 

aa( L) a9k) 

the  proper value f o r  g+ (u,), we obtain 

Referring t o  equation (2.90) and in se r t ing  

9 
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where >(( 3 ) i s  given by equation (2 .67) ,  i o e o  

Similarly,  r e f e r r ing  t o  equation (2-89)  and 

inse r t ing  the  proper value for g+ (u,) gives % 

(3.33) 

The evaluation of the above i n t e g r a l s  requires  

some straight-forward but r a t h e r  tedious algebra,  

For the sake of cont inui ty ,  t h i s  tedium w i l l  be relegated 

t o  the various appendices as indicatedo We have 



- 71 - 

where by def in i t ion ,  

(Appendix B) 

(Appendix B) 

where Z ( V g a )  i s  the plasma dispersion function and 

pa is  a d iscre te  r o o t .  

(Appendix B) 

(Appendix C) 
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Having determined these in t eg ra l s ,  we may write 

out the necessary expansion coe f f i c i en t s ,  Consider the 

continuous case f i r s to  Reducing the function t o  i t s  

simplest form gives 

The coef f ic ien t  f o r  the d i sc re t e  case i s  

Let us  discuss a t  t h i s  point the mathematical 

nature of these r e s u l t s o  We see t h a t  for a f i n i t e  k 

where the cha rac t e r i s t i c s  of the  function 



- 73  - 

have been used, i . e o  

(3,46) l i m  '\Y($,$) = 1 
3 3- 

(Appendix D )  

We a l s o  note t h a t  

The above cha rac t e r i s t i c s  and the f a c t  t h a t  there  e x i s t  

no s i n g u l a r i t i e s  i n  the function Ak( 9) indicate  t h a t  

Ak( Y' ) i s  a f a i r l y w e l l  behaved function of 1/ 
Fina l ly  we must devote some a t t en t ion  t o  the 

evaluation of the roots  t o  the s o  ca l led  dispers ion 

r e l a t ion :  

(3048) 0 = 1 + due o 

It i s  shown in Appendix E t h a t ,  f o r  the  case of 

a Maxwell-Boltzmann equilibrium d i s t r ibu t ion ,  there  

e x i s t  no r o o t s  t o  the above equation of  the  type 

Res t r i c t ing  a t t en t ion  therefore t o  the case where 

< 0, we get 
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Separating the above i n t o  the r e a l  and imaginary partts 

and solving f o r  Re( +u) and Im( gU) would give 

Unfortunately, due t o  the complexity of Z ( q  ga), the 

above proceedure is  extremely d i f f i c u l t , ”  a case where 

it can be done i s  t h a t  where Re( 

we obtain 

=B I m (  9,) Here 

= w (1 + 3/2 k2 A;) 
P (3.53) wo 

and 

where by def in i t ion  

This is  the Landau dispersion r e l a t ion ,  where 
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The problem has therefore been reduced t o  f inding 

the  inverse spatial transforms of 

f "  I 

and 

0 0  Returning now t o  our current " def in i t i on ,  we 

mult iply gk(uz, t )  by uzo  

of these r e s u l t s ,  we get 

Taking the inverse transform 

and 

Due t o  the complexity of the expansion coe f f i c i en t s  

and Ak(L/) and the d i f f i c u l t y  i n  determining the 

d i sc re t e  r o o t s  f o r  the general case, fu r the r  analysis  

of t h i s  pa r t i cu la r  problem would be relegated t o  
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computer techniqueso 



I V  CONCLUSIONS 

The properties of a plasma immersed i n  a constant 

ex terna l  magnetic f i e l d  may be determined, t o  a f irst  

order approximation, by the solution of a modified f irst  

moment of a l inear ized  transport  equation coupled t o  the 

four  Maxwell r e l a t i o n s o  For the case of plane symmetry, 

we can express the plasma phenomena i n  terms of t rans-  

verse and longi tudinal  modes of o sc i l l a t ion ,  i o e o  phe- 

nomena due t o  e lectron motion perpendicular t o  o r  par- 

a l l e l  w i t h  the d i rec t ion  of the outside impressed 

magrre%lc ficLi!." 

It i s  a t  t h i s  point t ha t  the equations become 

amenable t o  normal mode analysis e i t h e r  a s  a boundary 

value or an i n i t i a l  value problem, Here, we were 

concerned only w i t h  the l a t t e r o  Considering the 

t ransverse and longitudinal modes separately and 

ascr ibing a so-called I t  s t a t e  vector" t o  each, we 

Fourier transformed the space var iable  and assumed that  

a l l  time quan t i t i e s  varied as e We then found 
t w o  s e t s  of functions,  one cha rac t e r i s t i c  of the 

-ikvt 

t ransverse mode and the other of the longi tudinal  mode, 

wi th  the proper t ies  t h a t  each s e t  i s  complete i n  the 

longi tudinal  veloci ty  variable We demonstrated a 

prescr ip t ion  f o r  determining the  expansion coe f f i c i en t s  

c h a r a c t e r i s t i c  of  each s e t o  Using these formal 

r e l a t i o n s  we then could express the physical s t a t e  

vectors  (one f o r  the transverse mode and the  other f o r  
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the longitudinal mode) of an initial value problem as  a l inear  

combination of the normal  mode state vectors comprising the 

sets .  

The existence of the expansion coefficients for  the longitudinal 
r 7 

case was demonstrated by Case LCase, 1 9 5 9  whereas that for the 

t ransverse  mode was he re  assumed.  The justification of the la t ter  

is ra ther  involved for  it requi res  the methods of singular integral  

equations in the solutionof an inhomogeneous Hilbert problem. Our 

belief in the existence of such coefficients is strengthened, however , 

by Shure's  Shure, 1962 demonstration of existence of s imi l a r  

coefficients for  the t r ansve r se  mode boundary value problem. 
I: 3 
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APPENDIX L 

In  t h i s  sect ion,  we shal l  indicate  how equation 

(2,179) y ie lds  the normalisation coef f ic ien t ;  f o r  the 

continuous case. We begin by considering the evalua- 

t i o n  of the in t eg ra l  involving a double s ingular i ty ,  

Io, where 

The order of in tegra t ion  may not be a r b i t r a r i l y  

changed i n  the above. It can be shown by using the 

Bertrand-Poincare 

that  

transformation [ Muskhelishvili , 19531 

L L 

where q ( t , t l )  must s a t i s f y  a Holder condition. 

Assuming t h a t  our  function, Q'F(u,)A( g ' ) 9  s a t i s f i e s  

a Hhder  condition and l e t t i n g  

where we obtain 

'-W L W  
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/ 
Making use of the Poincare-Bertrand transformation and 

returning t o  the uz var iable ,  we get 

This may be fu r the r  reduced by the use of p a r t i a l  

fractionso It becomes 

where we used the expression 

Inser t ing  these r e s u l t s  in to  (z0179) and remembering 

t h a t  
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APPENDIX B 

Two necessary in t eg ra l s  are developed in  t h i s  

se c t i on 

. and 

2 
( B e 2 )  I2 = P I -  -Bu du 

-0 h 
zhcrc ;I is e ?en1 and continuous var iableo Consider 

I1; adding and subtracting t o  the numerator gives 

Turning t o  I2 and l e t t i n g  (1x0 a) 1 = y yie lds  

Theref ore 
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where the pr incipal  value sign i s  no longer neededo 

Consequently, 

Assuming an i n f i n i t e  s e r i e s  solution of the type 

we readily see that  

(B.10) m = 1 

( B o l l )  an = - 2 q  2n+l nl 0 

Theref ore 

where , by de f i n i t  i on, 

A simple term by term comparison of cp(Bpd ) w i t h  e Br ’  

indicates  that  

When these r e s u l t s  are  introduced i n t o  I1 and 129 we 

obtain 



The function, IZ3 i s  quite important i n  the acoustics 

of r a re f i ed  gases and i n  several engineering problems; 

it is  r e l a t ed  t o  the plasma dispersion function which 

i s  e s s e n t i a l l y  the Hilbert  transform of a Gaussian,, 

Fried and Conte [Fried and Conte, 19611 define t h i s  

function as 

3 0 

( ~ ~ 1 7 )  Z ( T )  = - 
-0 

for I m  l.3 > Q  &d a s  the ana ly t ic  continuation of 

t h i s  f o r  I m  1.3 6 0, 

It must be noticed tha t  the above evaluation of 

i s  va l id  only f o r  r) = r ea l  value, 

incorrect  t o  s t a t e  tha t  t h e  i n t eg ra l  

It would be 

with y', = complex quantity i s  given by 



Proof of the above statement f o l l o w s ,  Consider the 

l imi t ing  case of I ~ (  f a )  for Im( Qa) + 0, 
h (10 

where 

Therefore, usiag the f a c t  that  

gives 

which proves the above statement. Since the in t eg ra l  

( B 0 1 8 )  i s  of such importance i n  plasma physics and 

o the r  f i e l d s  of science some of i t s  mathematical 

cha rac t e r i s t i c s  w i l l  be developed i n  Appendix De The 

i n t eg ra l  12(B9 w i t h  = complex quant i ty  can, 

however, be r e l a t ed  t o  the plasma dispersion function 

by l e t t i n g  \Ts u = x; t h i s  y i e lds  

where Z ( u ,  v,> is  the  plasma dispers ion function whose 
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algebraic  form i s  given by 

(Be26) Z ( T )  = ifi e-’ 

It w i l l  be shown in Appendix E t h a t  the d iscre  

gu9 i s  such that  

< 0. 

+ 0 0 0  ] 
;e r o o t ,  

Final ly ,  t o  complete the re la t ionship  between the  

function cp(p,d ) for 

plasma dispersion function, we must remember t h a t  

y’= real quantity and the  
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APPENDIX C 

Consider the in t eg ra l  

where gu is  a r o o t  of the equation 

It i s  shown i n  Appendix E t h a t  t he  r o o t  t o  the above 

equation cannot be r e a l  and t h a t  I m ( b , )  < O o  

then assume these charac te r t fcs  for t he  presento  

We 

Letting 

and dropping the integrated term 

2 
P -BU 9 U = ue 

gives 

Adding and subtract ing g2 t o  the second term9 

in tegra t ing  the r e s u l t s  where possible  and rearranging 

the  terms y i e lds  
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Referring now to u e  results of Appendix B, we 

write 

where I m (  vu) < 0, 
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APPENDIX D 

Due t o  the importance of the  plasma d,spersion 

function and i t s  r e l a t i o n  t o  our i n t e g r a l  (B02), we 

s h a l l  devote some space here i n  i l l u s t r a t i n g  a few of 

the mathematical propert ies  t h a t  these functions have 

i n  commono From Appendix B, we have 

9 = r e a l  quantity. 

A cursory examination of t h i s  i n t e g r a l  ind ica tes  

The first r e s u l t  ind ica tes  that  

whereas the second means that  
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These r e s u l t s  are important when examining the nature 

of A k ( 3  
obtained by applying 1'HopitaJ's Rule and the  f ac t  that  

The above resu l t s  can be independently 

A f a i r l y  complete d iscr ip t ion  can be obtained by 

conqidering i ts  derivative for the  range 

Remembering that d ( J Q )  - e 8 d 2 ,  it may readi ly  be 

shown tha t  

0 d L + coo 

We see tha t  

The l i m i t  as d -  
obtain; a complete 

= 00 

Q) i s  somewhat more d i f f i c u l t  t o  

analysis requires  the use of 

1 'Hopi ta l ' s  ru le  several  times, 

what i n tu i t i ve  method, however, yields  the correct 

resu l t s .  Consider 

The following some- 

88 d-+m 2 -pd2 Remembering tha t  l i m i t  of 2$s/ q e  

i s  1, we have 



- 0, 
Final ly ,  the third zero i n  the derivative is  given by 

where 

Y 
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corresponds exactly t o  the real par t  of the dispersion 

function,ReZ( J)p f o r  the special  case where 

g= r e a l  quantity 

p - l o  
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APPENDIX E 

I n  t h i s  sect ion,  we shall  pay some a t t en t ion  t o  

the  der ivat ion of the  r o o t s  t o  the dispersion r e l a t i o n  

The f a c t  tha t  there  e x i s t s  no r e a l  r o o t s  t o  t h i s  

equation i s  evident from the followinga 

i s  a r e s u l t  of applying the normalization condition t o  

the pa r t i cu la r  normal mode solut ion 

Equation ( E o l )  

where i s  r e a l  d i sc re t e  quantity.  No principal  

value sign i s  necessary since,,in t h i s  case, 
A 

However f o r  a Maxwell-Boltzmann equilibrium d i s t r ibu t ion ,  

we have shown that  

2 -Buz 
2 2 

W 
(E04) 3 F'(u,) = -2 2 pf$- uz e . 

k k 

Consequently, i f  there  e x i s t s  r e a l  d i sc re t e  r o o t s  t o  

the  above dispersion r e l a t i o n ,  these would occur a t  
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and 

The f i r s t  conditfon implies 

2 
W 

(E,?) 0 = 1 + 2 3 B 
whioh is impossible since t h i s  would f i x  the value of 

k whereas the second would mean t h a t  

0 = 1 0  

Clear ly ,  there  cannot e x i s t  r e a l  d i scre te  r o o t s  for 

t he  case of a Maxwell-Bobtemann equilibrium dis t r fbu-  

t i one  Indeed, it i s  possible t o  shm by the argumenk 

theorem as Shure demonstrated [Shure, 19621 t h a t  the 

above dispersion r e l a t ion  can have no solut ions f o r  

the  case where Im( $,I 20. 

where Im( I.',) < 0; 
sec t ion  w i l l  be devoted t o  the consideration o f  t h i s  

case 

The only case l e f t  i s  that 

the remaining portion of t h i s  

Rewriting the above dispersion r e l a t ion  i n  

terms of the plasma dispersion function, we obtain 
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where I m (  pa) < 0, 
solut ion is, however, qui te  complicated; we can not 

hope t o  f ind  a general expression such as 

E ~ r i c a t i n g  r o o t s  from t h i s  general 

Such a r e l a t i o n  can, however, be found for the  l imited 

case where Re( Ua) % Im( Qa) 

outl ine leading t o  t h i s  r e l a t i o n o  

The following is an 

Lett ing glz .I ( po-i&) where I I),! B 868 
E > O  we may rewri te  the dispers ion r e l a t ion  a s  

and 

2 -Pu 
(EolO) 0 .I 1+* 8 dU o 

k 

Assuming that  

t o  zero as u _3 go9 we may drop 62 i n  the denominatoro 

Approximately we w r i t  e 

do is so large t h a t  the numerator goes 

Since E is so  small, we m a y  also  write  

A comparison Inclicatea t h a t  
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Since the meaningful par t  of the in tegra t ion  i s  i n  the 

region, 6 %  u, we may say t h a t  

(E.14) ( u -  go)-2 = 4[ 
$0 

Subst i tut ing t h i s  in to  the above in t eg ra l ,  in tegra t ing ,  

and re ta in ing  the l a rges t  term gives 

The r e a l  par t  of 

Consider the approximation equation (E012); for the  

case @ go > 1, we may drop the  imaginary term and 

rewri te  t h i s  equation as 

da may be found i n  a s imi la r  wayo 

In tegra t ing  t h i s  by p a r t s  and expanding (u- 

w a s  done for the imaginary case y ie lds  

as 

In tegra t ing  t h i s  and re taining the two l a rges t  contr i -  

butions gives 



- 98 - 

2 
(E018) 1 * - [1+-] 

k2 $2 0 28 o2 0 
o r  l e t t i n g  wo k gOg we obtain 

The only meaningful r o o t  t o  the above is  

2 
(E020) wo = wp(l + $  % 

BwP 

where t h e  f irst  two terms of the binomial expansion 

were re ta inedo  This r o o t  may be put i n t o  i t s  more 

common f o m  by remembering that 

n 

m B = 2grp 
L 2 - 4xne 

P 
. m ; W E  

Inser t ing the above i n t o  the expression f o r  wo gives 

where 

Defining wa 

imaginary pa r t  

k &!a = ( w , - i k ~ ) ~  yie lda  f o r  t he  



where wo = k do = w 

The above r e s u l t s  are  i n  f u l l  agreement w i t h  those 

derived by Landau; however, h i s  approach i s  d i f f e ren t .  

F ina l ly ,  it must be s t a t ed  that  these r e s u l t s  are  

va l id  whenever 

r e s u l t  of the method used t o  derive the r e a l  pa r t  of 

was used a s  a first approximation. 
P 

k AD << 1; t h i s  condition i s  a natural  

There it w a s  supposed tha t  the imaginary pa r t  of wU 

the  dispersion r e l a t i o n  was very small o r  t h a t  

B 9 ;  >> lo Writing wo - k go and l e t t i n g  wo- @wp gives 

o r  t h a t  

As an order of magnitude l imi ta t ion ,  t he  statement 

k A D <  1 suf f i ces ,  


